Self-assembling peptide nanofiber scaffold promotes the reconstruction of acutely injured brain.

نویسندگان

  • Jiasong Guo
  • Ka Kit Gilberto Leung
  • Huanxing Su
  • Qiuju Yuan
  • Li Wang
  • Tak-Ho Chu
  • Wenming Zhang
  • Jenny Kan Suen Pu
  • Gloria Kowk Po Ng
  • Wai Man Wong
  • Xiang Dai
  • Wutian Wu
چکیده

UNLABELLED Traumatic brain injury (TBI) or brain surgery may cause extensive loss of cerebral parenchyma. However, no strategy for reconstruction has been clinically effective. Our previous study had shown that self-assembling peptide nanofiber scaffold (SAPNS) can bridge the injured spinal cord, elicit axon regeneration, and eventually promote locomotor functional recovery. In the present study we investigated the effect of SAPNS for the reconstruction of acutely injured brain. The lesion cavity of the injured cortex was filled with SAPNS or saline immediately after surgically induced TBI, and the rats were killed 2 days, 2 weeks, or 6 weeks after the surgery for histology, immunohistochemistry, and TUNEL studies. Saline treatment in the control animals resulted in a large cavity in the injured brain, whereas no cavity of any significant size was found in the SAPNS-treated animals. Around the lesion site in control animals were many macrophages (ED1 positive) but few TUNEL-positive cells, indicating that the TBI caused secondary tissue loss mainly by means of necrosis, not apoptosis. In the SAPNS-treated animals the graft of SAPNS integrated well with the host tissue with no obvious gaps. Moreover, there were fewer astrocytes (GFAP positive) and macrophages (ED1 positive) around the lesion site in the SAPNS-treated animals than were found in the controls. Thus, SAPNS may help to reconstruct the acutely injured brain and reduce the glial reaction and inflammation in the surrounding brain tissue. FROM THE CLINICAL EDITOR Self-assembling peptide nanofiber scaffold (SAPNS) was reported earlier to bridge the injured spinal cord, elicit axon regeneration, and promote locomotor recovery. In this study the effect of SAPNS for the reconstruction of acutely injured brain was investigated. In SAPNS-treated animals the graft integrated well with the host tissue with no obvious gaps. SAPNS may help to reconstruct the acutely injured brain and reduced the glial reaction and inflammation in the surrounding brain tissue.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P 99: Self-Assembling Peptide Scaffolds as New Therapeutic Method in TBI: Focused on Bioactive Motifs

Traumatic brain injury (TBI) is a common reason of brain tissue loss as a result of tumors, accidents, and surgeries. Renewal of the brain parenchyma is restricted by many reasons such as inimical substances produced as the result of trauma and also inflammatory responses. A strong cascade of inflammatory responses begins as a result of TBI which include recalling peripheral leukocytes into the...

متن کامل

Designer Self-Assembling Peptide Nanofiber Scaffolds Containing Link Protein N-Terminal Peptide Induce Chondrogenesis of Rabbit Bone Marrow Stem Cells

Designer self-assembling peptide nanofiber hydrogel scaffolds have been considered as promising biomaterials for tissue engineering because of their excellent biocompatibility and biofunctionality. Our previous studies have shown that a novel designer functionalized self-assembling peptide nanofiber hydrogel scaffold (RLN/RADA16, LN-NS) containing N-terminal peptide sequence of link protein (li...

متن کامل

O15: Using Stromal Cell-Derived Factor-I as Bio Active Motif in A Novel Self-Assembly Peptide Nanofiber Scaffold: an Approach to Improve Cell Therapy in Brain Injury

Traumatic brain injury (TBI) is one of the main causes of mortality and morbidity worldwide. Despite extensive investigations over the past few decades, no effective therapies exist to improve the brain function in patients with TBI. Neural tissue engineering is an attractive therapeutic approach to restore the brain structure and function of damaged tissue. Bioactive motif of Stromal cell-deri...

متن کامل

Biological Designer Self-Assembling Peptide Nanofiber Scaffolds Significantly Enhance Osteoblast Proliferation, Differentiation and 3-D Migration

A class of self-assembling peptide nanofiber scaffolds has been shown to be an excellent biological material for 3-dimension cell culture and stimulating cell migration into the scaffold, as well as for repairing tissue defects in animals. We report here the development of several peptide nanofiber scaffolds designed specifically for osteoblasts. We designed one of the pure self-assembling pept...

متن کامل

Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision.

Nanotechnology is often associated with materials fabrication, microelectronics, and microfluidics. Until now, the use of nanotechnology and molecular self assembly in biomedicine to repair injured brain structures has not been explored. To achieve axonal regeneration after injury in the CNS, several formidable barriers must be overcome, such as scar tissue formation after tissue injury, gaps i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanomedicine : nanotechnology, biology, and medicine

دوره 5 3  شماره 

صفحات  -

تاریخ انتشار 2009